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General guidance to Additional Assessment Materials for use in 2021

Context

Additional Assessment Materials are being produced for GCSE, AS and A
levels (with the exception of Art and Design).

The Additional Assessment Materials presented in this booklet are

an optional part of the range of evidence teachers may use when deciding
on a candidate’s grade.

2021 Additional Assessment Materials have been drawn from previous
examination materials, namely past papers.

Additional Assessment Materials have come from past papers both
published (those materials available publicly) and unpublished (those
currently under padlock to our centres) presented in a different format to
allow teachers to adapt them for use with candidate.

Purpose

The purpose of this resource to provide qualification-specific sets/groups
of questions covering the knowledge, skills and understanding relevant to
this Pearson qualification.

This document should be used in conjunction with the mapping guidance
which will map content and/or skills covered within each set of
questions.

These materials are only intended to support the summer 2021 series.



1. A curve C has equation y = f (x)

Given that

e ' (x) = 6x°+ ax — 23 where a is a constant
e the y intercept of Cis —12

® (x +4) is a factor of f (x)
find, in simplest form, f (x)
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(Total for Question 1 is 6 marks)
2. (a) Given that
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find the values of the constants A, B and C
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(b) Hence, using algebraic integration, find the exact value of

6.2 _
J‘ x“+8x-3 dr
0 x+2

giving your answer in the form a + b In 2 where a and b are integers to be found.
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(Total for Question 2 is 7 marks)
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3. Show that J 2xJx+2 dx = %(2 +102).
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(a) show that J dx isindependent of k,  ecall 5—;— ax = x-In®
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(Total for Question 4 is 7 marks)




P(a, b)

y= xe .

Figure 3

In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.

Figure 3 shows a sketch of part of the curve with equation

y=xe >,

The point P(a, b) is the turning point of the curve. X =1

(a) Find the value of @ and the exact value of b.

‘ e
’ﬂuv\inﬂ Powb =) %:0 = Y= xe:l =2 —a%&- = Q/_U‘— 313-11 =°/ ()

= e e
—_ - - =
=2 1= dx = / s
=) n: —'e = ‘—
. A 2 Qg
=>w haw a= 3 M b=3e -

The finite region R, shown shaded in Figure 3, is bounded by the curve, the line with equation
y = b and the y-axis.

(b) Find the exact area of R.
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(Total for Question 5 is 9 marks)




6. (a)

3dx
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Use the substitution x = > + 1 to show that
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where p and ¢ are positive constants to be found.

°

3
C))
X=Ww+ | =) j 2 Ao du
u (3*'2\1\)
u:. m 'S
Wzt g e N
= Qs wi :
= 7 ja u(3+2.) e
dx = Qlaa du
dX = Qu du
limfs: W= flo-r=3
W= S =23
(b) Hence, using algebraic integration, show that
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(Total for Question 6 is 10 marks)




7. A large spherical balloon is deflating.
At time ¢ seconds the balloon has radius » cm and volume ¥ cm?
The volume of the balloon is modelled as decreasing at a constant rate.
(a) Using this model, show that

%_ k
dr P

where k is a positive constant.
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Given that
e the initial radius of the balloon is 40 cm
e after 5 seconds the radius of the balloon is 20 cm
e the volume of the balloon continues to decrease at a constant rate until the

balloon is empty

(b) solve the differential equation to find a complete equation linking » and .
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(c) Find the limitation on the values of ¢ for which the equation in part () is valid.
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(Total for Question 7 is 10 marks)
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Figure 3
The curve shown in Figure 3 has parametric equations
x=6sint y=15sin2t OSth

The region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

(a) (1) Show that the area of R is given by J? 60sintcos” ¢ dt
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(i1)Hence show, by algebraic integration, that the area of R is exactly 20

W ° 2 3)
let e Cosk  then O ~Gink db = 5 CogintCos' b db =j€0$m|:u, dn
S db = _dn o \ R
Ve W Sl g ~Sink
(e ,
=) * - u‘b z —L = ) ped
GOJ(7 W odw = CO[T]° GOKE,) Qo—o:_ regui

(Total for Question 8 is 6 marks)




9. Given that 4 is constant and
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show that there are exactly two possible values for 4.
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(Total for Question 9 is 5 marks)




